110 research outputs found

    Reflections on equality, diversity and gender at the end of a media studies headship

    Get PDF
    This article reflects, from a feminist perspective, on a five-year period as Head of a School of Media. It considers the position of media studies within the new academic capitalism, and the re-masculinisation of the university that this has produced. It considers strategies employed by the field to stake its own claim to that masculinisation, in particular the embrace of ‘the digital’. Finally it describes the challenges this posed for the author, and tactics employed in dealing with them

    Studies on the Cobalt Deficiency in Ruminants (III) : Effects of Thiamine, Glucose and Cobalamin Injection on the Metabolism of Cobalt-deficient Sheep

    Get PDF
    International audienceN-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X-inactivation was random in five females. The core phenotype of X-linked NAA10-related N-terminal-acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype–phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X-inactivation in females

    A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis

    Get PDF
    Background: Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings: To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (tƒ5min), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion: This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growt

    De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits:report of 25 new individuals and review of the literature

    Get PDF
    TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands

    Integrated platform for culture, observation, and parallelized electroporation of spheroids

    No full text
    International audienceWe present a new microsystem enabling in vitro culture of hundreds of spheroids in hydrogel support, their monitoring and parallel electroporation. We demonstrate its relevance for electro-chemotherapy assays of increased reproducibility

    In Vivo RNA Interference of a Gonad-Specific Transforming Growth Factor-beta in the Pacific Oyster Crassostrea gigas

    No full text
    International audienceWe investigated the role of oyster gonadal TGF beta (og-TGF beta) in the reproduction of Crassostrea gigas, using an in vivo RNA interference approach. We designed double-stranded RNA targeting og-TGF beta, which is specifically expressed in the somatic cells surrounding germ cells in the gonad of both male and female oysters. In vivo injection of this og-TGF beta dsRNA into the gonad led to knock-down phenotypes for both sexes, with significant reduction (77.52% relative to controls) of the gonad area, lowered reproductive effort and germ cell under-proliferation. Interestingly, half of the injected females halted their vitellogenesis, since we were only able to observe pre-vitellogenic oocytes. In addition, apoptotic germ cells and haemocytes infiltrated into the gonad, likely as part of the active resorption of degenerating germ cells. Conversely, males showed a normal phenotype at the cellular level, with spermatids and spermatozoids observed in the gonads of control and injected males. As a result, og-TGF beta appears to play an essential role in C. gigas germ cell development by functioning as an activator of germ cell proliferation in both male and female oysters and vitellogenesis in females
    corecore